MPLS based Virtual Private Network Services

Half Day Tutorial

http://www.mplsforum.org http://www.frforum.com
MPLS VPN Tutorial Agenda

• Introduction to MPLS and MPLS VPNs
 • Defining Layer 2 and 3 VPNs

• Layer 3 MPLS VPN
 • BGP Review
 • RFC 2547bis Key Characteristics
 • BGP/MPLS VPN Architecture Overview
 ✓ VPN Routing and Forwarding (VRF) Tables
 ✓ Overlapping VPNs
 ✓ VPN Route Distribution
 ✓ VPN Packet Forwarding
 ✓ Scaling L3VPNs and Route Reflectors
MPLS VPN Tutorial Agenda

• **Layer 2 VPNs**
 - IETF PWE3 and L2VPN WG update
 - Encapsulation and Label Stacking
 - Virtual Private Wire Services – VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
 - Virtual Private LAN Services – VPLS

• **Introduction to Multi-Service Interworking**
 - Carrier Challenges at the Edge
 - Interworking History and Definition
 - Network and Service Interworking (FRF.5 and FRF.8.1)
 - MPLS FR Alliance Multi-Service Interworking Work Actions

• **Carrier Migration Examples**
VPN Tutorial Contributors

• Thomas Bopp - Marconi Communications
• Paul Izzo - Consultant
• Sunil Kandakar - Alcatel
• Gary Leonard - Riverstone Networks
Why MPLS?

A Common Control Plane

Best of the packet-switched and circuit-switched worlds

- Enhancement and scalability of IP
- Metro Ethernet Services
- Legacy Network Migration
- Differentiated Services - CoS and QoS
- Layer 2 and Layer 3 VPNs
- Link Resiliency and Path Protection
MPLS: Addresses many network needs
MPLS FR Alliance and the IETF

- **MPLS Frame Relay Alliance – Mission**
 - The MPLS Frame Relay Alliance is an international industry wide organization driving worldwide deployment of multi-vendor multi-service label switching networks and associated applications.
 - Go to http://www.mplsforum.org

- **IETF – Mission**
 - The Internet Engineering Task Force ([IETF](http://www.ietf.org)) is a large open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet.
 - Go to http://www.ietf.org
Virtual Private Networks

- Provide private line and private LAN connections between multiple sites
- Leverage public network to provide competitive service pricing and reduce service operating cost
Virtual Private Networks

• VPN (Virtual Private Network) is simply a way of using a public network for private communications, among a set of users and/or sites

• Remote Access: Most common form of VPN is dial-up remote access to corporate database - for example, road warriors connecting from laptops

• Site-to-Site: Connecting two local networks (may be with authentication and encryption) - for example, a Service Provider connecting two sites of the same company over its shared network
MPLS, VPNs, and Standards

A lot of confusion

- L2TP
- VPWS
- Point to multipoint
- Layer 2
- IP VPNs
- Lasserre
- Tunneling
- VPLS
- Martini
- PWE3
- Layer 3
- Point to point
- BGP / MPLS VPNs
- RFC 2547 bis
- PPVPN
- Vkompella
- IPsec
- Kompella
VPNs

Types, Layers, and Implementations

<table>
<thead>
<tr>
<th>VPN Type</th>
<th>Layer</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leased Line</td>
<td>1</td>
<td>TDM/SDH/SONET</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>2</td>
<td>DLCI</td>
</tr>
<tr>
<td>ATM</td>
<td>2</td>
<td>VC</td>
</tr>
<tr>
<td>GRE/UTI/L2TPv3</td>
<td>3</td>
<td>IP Tunnel</td>
</tr>
<tr>
<td>Ethernet</td>
<td>2</td>
<td>VLAN / VPWS / VPLS</td>
</tr>
<tr>
<td>IP</td>
<td>3</td>
<td>RFC2547bis / VR</td>
</tr>
<tr>
<td>IP</td>
<td>3</td>
<td>IPSec</td>
</tr>
</tbody>
</table>
VPNs

How do they compare?

<table>
<thead>
<tr>
<th>Feature</th>
<th>FR or ATM</th>
<th>IPSec</th>
<th>L3 MPLS</th>
<th>L2 MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-multipoint</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multi-protocol</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>QoS and CoS</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Low latency</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Security</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SLAs</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
MPLS VPNs in the IETF

IETF Areas
- Application
- General
- Internet
- Op and Man
- Routing
- Security
- Sub-IP
- Transport
- User Services

L2VPN
L3VPN
MPLS
PWE3
MPLS VPNs in the IETF

- Layer 2 VPNs
- Layer 3 VPLS
- Pt-to-Pt circuits
- Encapsulations
 - ATM
 - FR
 - Ethernet
 - PPP/HDLC
 - SONET/SDH
What are Layer 2, Layer 3 VPNs

• VPNs based on a Layer 2 (Data Link Layer) technology and managed at that layer are defined as Layer 2 VPNs (MPLS, ATM, Frame Relay)

• VPNs based on tunneling at Layer 3 (Network Layer) are Layer 3 VPNs, (BGP/MPLS, VR, IPSec)
Visually - Layer 2 VPN

VPN Tunneling Protocols
LDP
BGP

SP Tunnels
VPN Tunnels (inside SP Tunnels)
VPN A
VPN B

Layer 2 link
CE Device 3
PE Device 1

Service Provider Network
PE Device 2

CE Device 2

PE Device 3
CE Device 4

Header 1 | Header 2 | Data Packet

Copyright © 2003 The MPLS & Frame Relay Alliance
Visually - Layer 3 VPN

In a Layer 3 VPN, CE Device and PE Device are IGP peers.

VPN Tunneling Protocols:
- L2TP
- IPSec
- MP-iBGP

PE Device 1 & PE Device 2 are BGP peers, and support VPN.
MPLS VPN Tutorial Agenda

• Introduction to MPLS and MPLS VPNs
 ● Defining Layer 2 and 3 VPNs?

• Layer 3 MPLS VPN
 ● BGP Review
 ● RFC 2547bis Key Characteristics
 ● BGP/MPLS VPN Architecture Overview
 ✓ VPN Routing and Forwarding (VRF) Tables
 ✓ Overlapping VPNs
 ✓ VPN Route Distribution
 ✓ VPN Packet Forwarding
 ✓ Scaling L3VPNs and Route Reflectors
What is BGP?

• BGP is an exterior gateway protocol that allows IP routers to exchange network reachability information.

• BGP became an internet standard in 1989 (RFC 1105) and the current version, BGP-4 was published in 1994 (RFC 1771).

• BGP is continuing to evolve through the Internet standards process.
IGP vs. EGP

• **Interior Gateway Protocol**
 - RIP, OSPF, IS-IS
 - Dynamic, some more than others
 - Define the routing needed to pass data *within* a network

• **Exterior Gateway Protocol**
 - BGP
 - Less Dynamic than IGPs
 - Defines the routing needed to pass data *between* networks
Internal Border Gateway Protocol

iBGP - BGP between routers in the same AS.

Provides a consistent view within the AS of the routes exterior to the AS.
External Border Gateway Protocol

eBGP - BGP between routers in two different AS’s.
MPLS VPN Tutorial Agenda

• Introduction to MPLS and MPLS VPNs
 • Defining Layer 2 and 3 VPNs?

• Layer 3 MPLS VPN
 • BGP Review
 • RFC 2547bis Key Characteristics
 • BGP/MPLS VPN Architecture Overview
 ✓ VPN Routing and Forwarding (VRF) Tables
 ✓ Overlapping VPNs
 ✓ VPN Route Distribution
 ✓ VPN Packet Forwarding
 ✓ Scaling L3VPNs and Route Reflectors
RFC 2547bis BGP/MPLS VPNs

Key Characteristics

- Requirements:
 - Support for overlapping, private IP address space
 - Different customers run different IGPs (i.e. RIP, OSPF, IS-IS)

- Solution:
 - VPN network layer is terminated at the edge (PE)
 - PE routers use plain IP with CE routers
BGP/MPLS VPNs

Key Characteristics

- **P** routers (LSRs) are in the core of the MPLS cloud

- **P** and **PE** (LERs) routers run an IGP and a label distribution protocol
 - Labelled VPN packets are transported over MPLS core

- **PE** routers are **MP-iBGP** fully meshed
 - for dissemination of **VPN membership and reachability information** between PEs
VPN Routing and Forwarding (VRF) Tables

- Each VPN needs a separate **VPN routing and forwarding instance (VRF)** in each PE router to
 - Provides VPN isolation
 - Allows overlapping, private IP address space by different organizations
VPN Routing and Forwarding (VRF)

PE to CE Router Connectivity

- Protocols used between CE and PE routers to populate VRFs with customer routes
 - BGP-4
 - useful in stub VPNs and transit VPNs
 - RIPv2
 - OSPF
 - static routing
 - particularly useful in stub VPNs

- **Note:**
 - Customer routes need to be advertised between PE routers
 - Customer routes are not leaked into backbone IGP
A VPN is a collection of **sites** sharing a common routing information (routing table)

A VPN can be viewed as a community of interest (or Closed User Group)

Examples:
- Extranet
- VoIP Gateway
VPN Routing and Forwarding (VRF)

Overlapping VPNs

- A site can be part of different VPNs
- A site belonging to different VPNs may or may not be used as a transit point between VPNs
- If two or more VPNs have a common site, address space must be unique among these VPNs

Examples:
- Extranet
- VoIP Gateway
VRFs and Route Distribution

- Multiple VRFs are used on PE routers
- The PE learns customer routes from attached CEs
- Customer routes are distributed to other PEs with MP-BGP
- Different IGPs or eBGP supported between PE and CE peers
VPN Route Distribution

Route Targets

- **Route Target** attributes
 - “Export” Route Target: Every VPN route is tagged with one or more route targets when it is exported from a VRF (to be offered to other VRFs)
 - “Import” Route Target: A set of routes targets can be associated with a VRF, and all routes tagged with at least one of those route targets will be inserted into the VRF
VPN Route Distribution

Route Targets

VRFs at PE1 will import routes from VPN-A and VPN-X

VRFs at PE4 will import routes from VPN-A and VPN-Y
VPN Route Distribution

- How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #1: PE routers run a different routing algorithm for each VPN

- **Scalability problems** in networks with a large number of VPNs
- Difficult to support overlapping VPNs
VPN Route Distribution

- How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #2: BGP/MPLS VPN - PE routers run a single routing protocol to exchange all VPN routes
 - Problem: Non-unique IP addresses of VPN customers. BGP always propagates one route per destination not allowing address overlap.
VPN Route Distribution

VPN-IPv4 Addresses

- **VPN-IPv4 Address**
 - VPN-IPv4 is a globally unique, 96bit routing prefix

<table>
<thead>
<tr>
<th>Route Distinguisher (RD)</th>
<th>IPv4 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Makes the IPv4 address globally unique, RD is configured in the PE for each VRF, RD may or may not be related to a site or a VPN</td>
<td>IP subnets advertised by the CE routers to the PE routers</td>
</tr>
</tbody>
</table>
VPN Route Distribution

VPN-IPv4 Addresses

- Route Distinguisher format

 00 00 ASN nn

 - ASN:nn
 - Autonomous System Number (ASN) assigned by Internet Assigned Number Authority (IANA)

 00 01 IP address nn

 - IP-address:nn
 - use only if the MPLS/VPN network uses a private AS number

 00 02 BGP-AS4 nn

 - BGP-AS4:nn
 - 4-byte Autonomous System Number (BGP-AS4)
VPN Route Distribution

BGP with Multiprotocol Extensions

- **How are 96-bit VPN-IPv4 routes exchanged between PE routers?**

- **BGP with Multiprotocol Extensions** (MP-BGP) was designed to carry such routing information between peer routers (PE)
 - propagates VPN-IPv4 addresses
 - carries additional BGP route attributes (e.g. route target) called extended communities
VPN Route Distribution

BGP with Multiprotocol Extensions

- A BGP route is described by
 - standard BGP Communities attributes (e.g. Local Preference, MED, Next-hop, AS_PATH, Standard Community, etc.)
 - extended BGP Communities attributes

- Extended Communities
 - Route Target (RT)
 - identifies the set of sites the route has to be advertised to
 - Route Origin (RO)/Site of Origin
 - identifies the originating site
 - to prevent routing loops with multi-homed customer sites
IGP Label Distribution

- All routers (P and PE) run an IGP and a label distribution protocol
- Each P and PE router has routes for the backbone nodes and a label is associated to each route
- MPLS forwarding is used within the backbone
MP-BGP Route Distribution

VPN-IPv4 updates are translated into IPv4 address and inserted into the VRF corresponding to the RT value

VPN-IPv4 update:
Net1:RD1, Next-hop=PE2
RO=Site-2, RT=Green
Label=10

VPN-IPv4 update:
Net1:RD2, Next-hop=PE2
RO=Site-2, RT=Yellow
Label=12

“Net1” is the provider’s autonomous system
MP-BGP Route Distribution

Summary

• VPN Routing and Forwarding (VRF) Table
 ● Multiple routing tables (VRFs) are used on PEs
 ✓ VPNs are isolated

• Customer addresses can overlap
 ● Need for unique VPN route prefix
 ● PE routers use MP-BGP to distribute VPN routes to each other
 ● For security and scalability, MP-BGP only propagates information about a VPN to other routers that have interfaces with the same route distinguisher value.

MP-BGP = BGP with Multiprotocol Extensions
VPN Packet Forwarding

PE-to-PE connectivity via LSPs

- All routers (P and PE) run an IGP and a label distribution protocol
- Each P and PE router has routes for the backbone nodes and a label is associated to each route
- MPLS forwarding is used within the backbone
VPN Packet Forwarding
Label Stacking

VRF Green: Net1, Next-hop: PE2 Label 10
VRF Yellow: Net1, Next-hop: PE2 Label 12

- Ingress PE router uses two-level label stack
 - VPN label (inner label) assigned by the egress PE router
 - IGP label (top label) identifying the PE router

- Label stack is attached in front of the VPN packet
- The MPLS packet is forwarded across the P network
VPN Packet Forwarding
Label Stacking

P routers switch the packet based on the IGP Label (top label)

PE1 router receives normal IP packet from CE1 router.
PE router does “IP Longest Match” from VRF, finds iBGP next hop PE2 and imposes a stack of labels

Egress PE router removes top label, uses inner label to select which VPN/CE to forward the packet to.
Inner label is removed and packet sent to CE2 router
VPN Packet Forwarding

Penultimate Hop Popping

P routers switch the packet based on the IGP Label (top label)

Penultimate Hop Popping
P2 is the penultimate hop for the BGP next-hop
P2 removes the top label
This has been requested through LDP by PE2

PE1 router receives normal IP packet from CE1 router.
PE router does “IP Longest Match” from VRF, finds iBGP next hop PE2 and imposes a stack of labels

PE2 receives packets with the label corresponding to the outgoing VRF
One single lookup
Label is popped and packet sent to CE2 router
Core Routers (P Routers)

- not involved in MP-BGP
- does not make routing decision based on VPN addresses
- forwards packet based on the top label value
- P routers do not need to carry VPN routing information or Internet routing information, thus providing better network scalability
Scaling BGP/MPLS VPNs

- Scalability of BGP/MPLS VPNs
 - Expanding the MPLS core network
 - without impact on the VPN services, e.g. adding P routers (LSRs), new or faster links
 - Label stacking
 - allows reducing the number of LSPs in the network core and avoiding LSP exhaustion
 - VPN Route Distribution
 - Route Reflectors
Scaling BGP/MPLS VPNs

Route Reflectors

• BGP Route Reflectors
 • Existing BGP technique, can be used to scale VPN route distribution
 ✓ PEs don’t need full mesh of BGP connections, only connect to RRs
 ✓ By using multiple RRs, no one box needs to have all VPN routes
 • Each edge router needs only the information for the VPNs it supports
 ✓ directly connected VPNs
Reference Material

Books:
"BGP4 Inter-Domain Routing in the Internet" by John Stewart ISBN 0-201-37951-1
"Internet Routing Architectures" by Bassam Halabi ISBN 1-56205-652-2
"Interconnections: Bridges and Routers" by Radia Perlman ISBN
"Routing in the Internet" by Christian Huitema ISBN 0-13-132192-7

Mail Lists:
SSR mailinglist - majordomo@cabletron.com
GateD mailinglists - See www.gated.org
North American Network Operators Group (NANOG) mailist - See www.merit.org
Reference Material

Request For Comments - RFCs

08/98 - RFC2385PS "Protection of BGP Sessions via the TCP MD5 Signature Option"
02/98 - RFC 2283PS "Multiprotocol Extensions for BGP-4"
01/97 - RFC 2042 "Registering New BGP Attribute Types"
08/96 - RFC 1998 "An Application of the BGP Community Attribute in Multi-home Routing"
08/96 - RFC 1997 "BGP Communities Attribute"
06/96 - RFC 1966 "BGP Route Reflection An alternative to full mesh"
06/96 - RFC 1965 "Autonomous System Confederations for BGP"
10/95 - RFC 1863 "A BGP/IDRP Route Server alternative to a full mesh routing"
08/95 - RFC 1817 “CIDR and Classful Routing”
03/95 - RFC 1774 "BGP-4 Protocol Analysis"
03/95 - RFC 1773 "Experience with the BGP-4 protocol"
03/95 - RFC 1772 "Application of the Border Gateway Protocol in the Internet"
03/95 - RFC 1771 "A Border Gateway Protocol 4 (BGP-4)"
12/94 - RFC 1745 "BGP4/IDRP for IP---OSPF Interaction"
07/94 - RFC 1657 "Definitions of Managed Objects for BGP-4 using SMIv2"
09/93 - RFC 1520 “Exchanging Routing Information Across Provider Boundaries in CIDR”
09/93 - RFC 1519 “CIDR; an Address Assignment and Aggregation Strategy”
09/93 - RFC 1518 “An Architecture for IP Address Allocation with CIDR”
Reference Material

Internet Drafts

08/98 "LDP Specification"
08/98 "Border Gateway Multicast Protocol (BGMP): Protocol Specification"
08/98 "A Framework for Inter-Domain Route Aggregation"
08/98 "Routing Policy Configuration Language (RPCL)"
08/98 "Carrying Label Information in BGP-4"
08/98 "Capabilities Negotiation with BGP-4"
08/98 "BGP Security Analysis"
08/98 "A Border Gateway Protocol 4 (BGP-4)"
07/98 "Using RPSL in Practice"
07/98 "Multiprotocol Label Switching Architecture"
06/98 "NHRP for Destinations off the NBMA Subnetwork"
05/98 "BGP Route Flap Damping"
04/98 "BGP-4 Capabilities Negotiation for BGP Multiprotocol Extensions"
03/98 "To Be Multihomed: Requirements & Definitions"
03/98 "BGP-4 over ATM and Proxy PAR"
02/98 "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing"
02/98 "Carrying Label Information in BGP-4"
01/98 "DNS-base NLRI origin AS verification in BGP"
Reference Material

Internet Drafts – L3VPN

General
- Guidelines of Applicability Statements for PPVPNs
- A Framework for Layer 3 Provider Provisioned Virtual Private Networks
- Generic Requirements for Provider Provisioned VPN
- Service requirements for Layer 3 Provider Provisioned Virtual Private Networks
- Framework for PPVPN Operations and Management
- Definition of Textual Conventions for Provider Provisioned Virtual Private Network Management
- Security Framework for Provider Provisioned Virtual Private Networks
- Using BGP as an Auto-Discovery Mechanism for Provider-provisioned VPNs
- CE-to-CE Member Verification for Layer 3 VPNs

BGP/MPLS VPN
- Applicability Statement for BGP/MPLS IP VPNs
- BGP/MPLS IP VPNs
- OSPF as the PE/CE Protocol in BGP/MPLS VPNs
- Use of PE-PE IPsec in RFC2547 VPNs
- Use of PE-PE GRE or IP in RFC2547 VPNs
- BGP-MPLS VPN extension for IPv6 VPN
- MPLS/BGP Virtual Private Network Management Information Base Using SMIv2

Virtual Router
- Applicability Statement for Virtual Router-based Layer 3 PPVPN approaches
- Network based IP VPN Architecture using Virtual Routers
- Virtual Router Management Information Base Using SMIv2

IPSEC
- An Architecture for Provider Provisioned CE-based Virtual Private Networks using IPsec
MPLS based Virtual Private Network Services

Break

http://www.mplsforum.org http://www.frforum.com
MPLS VPN Tutorial Agenda

• Layer 2 VPNs
 • IETF PWE3 and L2VPN WG update
 • Encapsulation and Label Stacking
 • Virtual Private Wire Services – VPWS
 • Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
 • Virtual Private LAN Services – VPLS

• Introduction to Multi-Service Interworking
 • Carrier Challenges at the Edge
 • Interworking History and Definition
 • Network and Service Interworking (FRF.5 and FRF.8.1)
 • MPLS FR Alliance Multi-Service Interworking Work Actions

• Carrier Migration Examples
MPLS L2 VPN Market Drivers

What can we conclude?

• Layer 3 IP is not the only traffic
 • Still a lot of legacy SNA, IPX etc
 • Large enterprises have legacy protocols

• Layer 3 IP VPNs are not the whole answer
 • IP VPNs cannot handle legacy traffic

• Layer 2 legacy traffic widely deployed

Carriers need to support
Layer 2 and Layer 3 VPNs
MPLS Layer 2 VPNs

• Point-to-point layer 2 solutions
 • **Virtual Private Wire Services** - VPWS
 • Similar to ATM / FR services, uses tunnels and connections (LSPs)
 • Customer gets connectivity only from provider
 • Ongoing work to encapsulate Ethernet, ATM, FR, TDM, SONET, etc

• Multi-point layer 2 solutions
 • **Virtual Private LAN Services** - VPLS
 • Virtual Private LAN Services (VPLS) aka TLS
 • Ethernet Metro VLANs / TLS over MPLS
 • Independent of underlying core transport
 • All drafts “currently” support PWE3 (Martini) Ethernet encapsulation
 • Differences in drafts for discovery and signaling
MPLS Point-to-Point Service

- Tunnel Label determines path through network
- VC Label identifies VLAN, VPN, or connection at the end point
MPLS Point-to-Point Services

Label Stacking

- Three Layers of Encapsulation
 1) **Tunnel Header**: Contains information needed to transport the PDU across the IP or MPLS network
 2) **Demultiplexer Field**: Used to distinguish individual emulated VCs within a single tunnel
 3) **Emulated VC Encapsulation**: Contains the information about the enclosed PDU (known as Control Word)

- Tunnel Header determines path through network
- Demultiplexer Field identifies VLAN, VPN, or connection at the end point
- All services look like a Virtual Circuit to MPLS network
Encaps Information Field

<table>
<thead>
<tr>
<th>bits</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rsvd</td>
<td>Flags</td>
<td>Length</td>
<td>Sequence Number</td>
</tr>
</tbody>
</table>

Control Word

- Layer 2 header fields may be discarded at ingress.
- Control word carries “flag” bits depending on encapsulation:
 - (FR: FECN, BECN, C/R, DE, ATM: CLP, EFCI, C/R, etc)
- Length required when padding small frames on links which have a minimum frame size.
- Sequence number is optional. It is used to detect out of order delivery of frames.
LDP - Label Mapping Message

<table>
<thead>
<tr>
<th>Label Mapping</th>
<th>Message Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td></td>
</tr>
<tr>
<td>FEC TLV</td>
<td></td>
</tr>
<tr>
<td>Label TLV</td>
<td></td>
</tr>
<tr>
<td>Label Request Message ID TLV</td>
<td></td>
</tr>
<tr>
<td>LSPID TLV (optional)</td>
<td></td>
</tr>
<tr>
<td>Traffic TLV (optional)</td>
<td></td>
</tr>
</tbody>
</table>
New VC FEC Element Defined

<table>
<thead>
<tr>
<th>VC TLV</th>
<th>C</th>
<th>VC Type</th>
<th>VC Info Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Virtual Circuit FEC Element**
 - C - Control Word present
 - VC Type - FR, ATM, Ethernet, HDLC, PPP, ATM cell
 - VC Info Length - length of VCID field
 - Group ID - user configured - group of VCs representing port or tunnel index
 - VC ID - used with VC type to identify unique VC
 - Interface Parameters - Specific I/O parameters
Layer 2 Encapsulation

Ongoing work in PWE3

- draft-ietf-pwe3-requirements-06.txt – 06/03
 - “This document describes base requirements for the Pseudo-Wire Emulation Edge to Edge Working Group (PWE3 WG). It provides guidelines for other working group documents that will define mechanisms for providing pseudo-wire emulation of Ethernet, ATM, Frame Relay, raw HDLC, and MPLS. “

- draft-ietf-pwe3-arch-05.txt – 08/03
 - “This document describes an architecture for Pseudo Wire Emulation Edge-to-Edge (PWE3). It discusses the emulation of services (such as Frame Relay, ATM, Ethernet TDM and SONET/SDH) over packet switched networks (PSNs) using IP or MPLS. It presents the architectural framework for pseudo wires (PWs), defines terminology, specifies the various protocol elements and their functions.”
Layer 2 Encapsulation *PWE3*

WG documents (original Martini work)

- Pseudowire Set-up and Maintenance using LDP
 - draft-ietf-pwe3-control-protocol-03.txt – June 03
- ATM AAL5 and ATM cell
 - draft-ietf-pwe3-atm-encap-02.txt – June 03
- Frame Relay
 - draft-ietf-pwe3-frame-relay-01.txt – July 03
- Ethernet / 802.1q VLAN
 - draft-ietf-pwe3-ethernet-encap-03.txt – June 03
- PPP/HDLC
 - draft-martini-ppp-hdlc-encap-mpls-00.txt
MPLS Ethernet Encapsulation

draft-ietf-pwe3-ethernet-encap-03.txt

• Ingress device strips the Ethernet preamble and FCS
• Ethernet header becomes “control word”
• New MPLS Ethernet header (type 0x8847) and new FCS is added to MPLS Ethernet packet
MPLS Ethernet Encapsulation

draft-ietf-pwe3-ethernet-encap-03.txt

- Martini VC Encaps field is normally 32 bits
- Ethernet VC Encaps field equals
 - DA and SA at 6 bytes each
 - Length at 2 bytes
 - 802.1q VLAN at 4 bytes
 - Total at 18 bytes (144 bits vs 32 bits)
Life of a Frame

Ethernet over Ethernet MPLS

Slide 66 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance
ATM and Frame Relay Service
Reference Model

Requirements for Pseudo Wire Emulation
Edge-to Edge (PWE3)
ATM AAL5 Encapsulation

draft-ietf-pwe3-atm-encap-02.txt

- Ingress reassembles AAL5 frames and strips 8 octet AAL5 trailer
- Required control word includes:
 - T = Transport type bit
 - Common Part Convergence Sublayer-Protocol Data Unit (AAL5 CPCS-PDU)
 - Or ATM Cell
 - E = EFCI bit - Efficient Forward Congestion
 - L = CLP bit - Cell Loss Priority
 - C = Command / Response bit
ATM Cell Mode Encapsulation

draft-ietf-pwe3-atm-encap-02.txt

- Ingress performs no reassembly
- Control word is optional:
 - Length may be used to infer number of cells
 - Flags set to zero
MPLS PWE3 FR Encapsulation
draft-ietf-pwe3-frame-relay-01.txt

• Main Functions: FR over Pseudo Wire - FRoPW
 • Encapsulation of FR specific information in a suitable FRoPW packet (ingress function)
 • Transfer of a FRoPW packet through IP / MPLS network
 • Extraction of FR specific information from a FRoPW packet (egress function)
 • Generation of native FR frames at egress
 • Other operations to support FR services
MPLS PWE3 FR Encapsulation

draft-ietf-pwe3-frame-relay-01.txt

- Two Mapping modes defined between FR VCs and FR PWs
 - One-to-one mapping
 - One FR VC mapped to a pair of unidirectional PWs

Diagram:
- CE-1 to PE1: One Bi-directional FR VC
- PE1 to PE2: Pair of Uni-directional PW LSPs
- PE2 to CE-2: One Bi-directional FR VC
- CE-1 to CE-2: Pseudo Wire Emulated Service
MPLS PWE3 FR Encapsulation

draft-ietf-pwe3-frame-relay-01.txt

- Two Mapping modes defined between FR VCs and FR PWs
 - Many-to-one or port mode mapping (Optional – w/ header)
 - Many FR VCs mapped to a pair of Unidirectional PWs

![Diagram showing Pseudo Wire Emulated Service]
MPLS Frame Relay Encapsulation

draft-ietf-pwe3-frame-relay-01.txt

- F = FECN (Forward Explicit Congestion Notification)
- B = BECN (Backward Explicit Congestion Notification)
- D = DE (Discard Eligibility Indicator)
- C = C/R (Command / Response Field)
MPLS VPN Tutorial Agenda

• Layer 2 VPNs
 • IETF PWE3 and L2VPN WG update
 • Encapsulation and Label Stacking
 • Virtual Private Wire Services – VPWS
 • Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
 • Virtual Private LAN Services – VPLS

• Introduction to Multi-Service Interworking
 • Carrier Challenges at the Edge
 • Interworking History and Definition
 • Network and Service Interworking (FRF.5 and FRF.8.1)
 • MPLS FR Alliance Multi-Service Interworking Work Actions

• Carrier Migration Examples
MPLS Layer 2 Multipoint Services

IETF Virtual Private LAN Services - VPLS

- draft-ietf-ppvnpn-vpls-requirements-01.txt – 10/02
 - Describes service requirements related to emulating a Virtual Private LAN segment over an IP or MPLS network
 - VPLS topology “may” be:
 - Point-to-point, Point-to-multipoint, Any-to-any (full mesh), Mixed (partial mesh), Hierarchical
 - Service to the customers “must” retain the typical LAN any-to-any connectivity

- draft-ietf-ppvnpn-l2-framework-02.txt - 01/03
MPLS VPLS Architecture

Distributed PE functions
PE-POP = PE at SP POP
PE-CLE = PE at customer site
MPLS VPLS

VPLS Reference Model

Service Provider MPLS Backbone

VPLS-A
VPLS-B

PE
CE

MTU-s
Ethernet Network

VPLS-A
VPLS-B

CE

VPLS-B

VPLS-A

MPLS VPLS

VPLS Reference Model

- Tunnel LSPs are established between PEs
- Customer Virtual Private LANs are tunneled through MPLS network
Virtual Private LAN Services
draft-ietf-l2vpn-vpls-ldp-00.txt

- Updated June 2003
- Defines an Ethernet (IEEE 802.1D) learning bridge model over MPLS Martini Ethernet circuits
- Defines the LER (PE) function for an MPLS VPLS network
- Creates a layer 2 broadcast domain for a closed group of users
- MAC address learning and aging on a per LSP basis
- Packet replication across LSPs for multicast, broadcast, and unknown unicast traffic
- Includes Hierarchical VPLS

✓ formerly draft-khandekar-ppvpn-hvpls-mpls-00.txt
Virtual Private LAN Services
draft-ietf-l2vpn-vpls-ldp-00.txt

- Tunnel LSPs are established between PEs
- Customers designated C1 and C2 are part of two independent Virtual Private LANs
- Layer 2 VC LSPs are set up in Tunnel LSPs
- Core MPLS network acts as a LAN switch
Virtual Private LAN Services

draft-ietf-l2vpn-vpls-ldp-00.txt

- Reduces signaling and packet replication to allow large scale deployment of VPLS
- Uses Martini VC / LSPs between edge MTU and VPLS aware PE devices

VC-1 = Single pt-to-pt Martini Tunnel LSP
MTU-s = Bridging Capable MTU (Multi Tenant Unit)
PE-rs = VPLS Capable PE
B = Virtual VPLS (Bridge) Instance
VPLS Internal PE Architecture

Attachment circuit

IEEE 802.1D bridging code

IETF VPLS code

Emulated LAN

Pseudo-Wires

Emulated LAN instance
VPLS Code

- **VPLS Forwarding**
 - Learns MAC addresses per pseudo-wire (VC LSP)
 - Forwarding based on MAC addresses
 - Replicates multicast & broadcast frames
 - Floods unknown frames
 - Split-horizon for loop prevention

- **VPLS Signaling**
 - Establishes pseudo-wires per VPLS between relevant PEs

- **VPLS Discovery (Manual, LDP, BGP, DNS)**
Bridging Code

- Standard IEEE 802.1D code
 - Used to interface with customer facing ports
 - Might run STP with CEs
 - Used to interface with VPLS
 - Might run STP between PEs
VPLS Scalability

Parameters

• Number of MAC Addresses
• Number of replications
• Number of LSPs
• Number of VPLS instances
• Number of LDP peers
• Number of PEs
VPLS Scalability

Signaling Overhead – Flat Topology

- Architecture has a direct impact on the Signaling Overhead (control plane)
VPLS Scalability
Signaling Overhead – Hierarchical Topology

• Architecture has a direct impact on the Signaling Overhead (control plane)
VPLS Scalability

Replication Overhead – **Flat Topology**

- Architecture has a direct impact on Replication Overhead (forwarding plane)
VPLS Scalability

Replication Overhead – Hierarchical Topology

- Architecture has a direct impact on Replication Overhead (forwarding plane)
VPLS Scalability
Adding a New Site – Flat Topology

- Architecture affects Provisioning & Signaling between all nodes
VPLS Scalability
Adding a New Site – Hierarchical Topology

• Architecture affects Provisioning & Signaling between all nodes
VPLS Scalability

Inter-Metro Service

- Architecture has a direct impact on ability to offer Inter-Metro Service
VPLS Scalability

Inter-Metro Service

- Architecture has a direct impact on **ability to offer Inter-Metro Service**
VPLS Scalability

FIB Size

- VPLS FIB size depends on the type of Service Offering:
 - Multi-protocol Inter-connect service
 - Mimics the DSL Tariff Model
 - Customers are charged per site per block of MAC addresses
 - Router Inter-connect
 - One MAC address per site

- Same Network Design principles apply for
 - MAC FIB Size of VPLS Service and,
 - Route Table Size of VPRN Service
MPLS Layer 2 Multipoint Services

Other VPLS Drafts

- draft-ietf-l2vpn-vpls-bgp-00.txt 05/03
 - Describes the use of BGP for discovery and signaling
- draft-rosen-ppvpn-l2-signaling-02.txt
 - Describes and compares signaling issues
- Draft-shah-ppvpn-ipls-02.txt
 - IP only LAN service
- draft-radoaca-ppvpn-gvplslpe-02.txt 06/03
 - GVPLS/LPE - Generalized VPLS Solution based on LPE Framework
- draft-stokes-vkompella-ppvpn-hvplslpe-oam-02.txt 06/03
 - Testing Hierarchical Virtual Private LAN Services
VPLS Conclusion

• VPLS standardization
 - PWE3 encapsulation and control
 - L2VPN VPLS draft convergence and momentum
 - Signaling and Discovery options
 - IEEE 802.1ad Provider Bridge WG actions

• Next IETF meeting Minneapolis MN 11/9 – 11/14 2003
MPLS VPNs Summary

- Layer 2 versus Layer 3
 - Apples and Oranges

- Layer 3 MPLS VPNs
 - Deployed and at RFC stage

- Layer 2 MPLS VPNs
 - Lot’s of Interest from Carriers and Vendors
 - Many new drafts – lots of consolidation
 - We are in “concept” stage
 - Solutions available 2003
MPLS VPN Tutorial Agenda

• Layer 2 VPNs
 • IETF PWE3 and L2VPN WG update
 • Encapsulation and Label Stacking
 • Virtual Private Wire Services – VPWS
 • Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
 • Virtual Private LAN Services – VPLS

• Introduction to Multi-Service Interworking
 • Carrier Challenges at the Edge
 • Interworking History and Definition
 • Network and Service Interworking (FRF.5 and FRF.8.1)
 • MPLS FR Alliance Multi-Service Interworking Work Actions

• Carrier Migration Examples
Why Interwork?

• Carriers want a common edge infrastructure to support and “Interwork” with legacy and new services

• Carriers want to support all legacy transports technologies and services

• Carriers are planning to converge on an IP / MPLS core

• Carriers want to seamlessly introduce Metro Ethernet services and IP VPNs
Network Services Market

Broadband Data Services Growth Projections

2003 Total = $26B

- Private Lines (46%)
- FR / ATM (47%)
- IP VPN (4%)
- Other (3%)

2007 Total = $37B

- Private Lines (52%)
- FR / ATM (34%)
- IP VPN (10%)
- Other (4%)

- Private Lines, FR, and ATM comprise 93% of the $26B US broadband business services market now, and 86% of the projected $37B total in 2007
- Other above includes Ethernet, X.25, etc

Source: Vertical Systems Group July 2003
Interworking

History

• The Frame Relay Forum defined the **Network Interworking** function between Frame Relay and ATM in the FRF.5 document finalized in 1994.

• The Frame Relay Forum defined the **Service interworking** function between Frame Relay and ATM in the FRF.8.1 document finalized in 2000.

• Why define FR and ATM interworking?
 - ATM cores with FR access services deployed
 - ATM and Frame Relay circuits are point-to-point
 - Both data links have services that are somewhat similar in nature even though the signaling is different
InterWorking Function - IWF

Network vs Service IWF

Network Interworking
- Network Interworking is used when one protocol is “tunneled” across another “intermediary” network / protocol
- The Network Interworking function “terminates” and “encapsulates” the protocol over a Pt-to-Pt connection

Service Interworking
- Service Interworking is required to “translate” one protocol to another protocol – used between two unlike protocols
- The Service Interworking function “translates” the control protocol information transparently by an interworking function (IWF)
Network Interworking FRF.5
Reference Model

Frame Relay Service - FRS

- Network Interworking *encapsulates* the L2 Service
- FRS is *encapsulated* and sent across ATM network
- Service at the end points *have to be* the same
Service Interworking FRF.8.1 Reference Model

FR Service is *translated* to ATM service

• *Service* Interworking *translates* the L2 Service
• FR service is *translated* into ATM service
• Services at the end points *are not* the same
Why not continue with ATM IW?

• ATM is optimized for voice transport – cell overhead etc

• Cells are simply fixed length packets and can be carried unchanged across an MPLS network

• Packets are not cells and must be adapted to be carried across ATM

• MPLS is optimized for packet transport

• Carriers want to converge on IP/MPLS cores supporting both new and legacy services
Why Migrate to MPLS?

- MPLS allows service providers to converge onto a single infrastructure while offering existing services.
- MPLS enables new service offerings and simplifies service provisioning.
- MPLS supports rapid growth in IP applications and services.
- MPLS allows the integration of services management into a common OSS strategy.
- MPLS supports the integration of packet technologies and optical cores.
MPLS Multi-Service Interworking

MPLS Connects Services at the Edge

- ATM
- FR
- TDM
- Ethernet
- IP / MPLS
MPLS Network Interworking

IETF PWE3 Pt-to-Pt Encapsulation

Service has to be pt-to-pt between like services: ATM to ATM, FR to FR, Enet to Enet, etc
MPLS Multi-Service Interworking
Reference Model

ATM, FR, or Enet Service

Pseudo Wires

PSN Tunnel

ATM, FR, or Enet Service

CE Devices

IWF

PE Device

PSN

PE Device

IWF

CE Devices

Emulated Service

PE = Provider Edge
CE = Customer Edge
PSN = Packet Switched Network
IWF = InterWorking Function

Multi-Service: Services equal to FR, ATM, Ethernet
Standards and Alliance Work

• IETF RFCs
 - RFC 2684 for ATM (previously 1483) and 2427 for FR (previously 1490) define an encapsulation for carrying layer 2 or layer 3 PDUs over ATM and FR respectively

• MPLS FR Alliance
 - Scope and Requirements Baseline Text
 ✓ Mpls2003.043.00 July 2003
 ✓ Mpls2003.114.00 September 2003

• Metro Ethernet Forum
 - Ethernet Internetworking Function (E-IWF) draft Shah
MPLS VPN Tutorial Agenda

• Layer 2 VPNs
 • IETF PWE3 and L2VPN WG update
 • Encapsulation and Label Stacking
 • Virtual Private Wire Services – VPWS
 • Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
 • Virtual Private LAN Services – VPLS

• Introduction to Multi-Service Interworking
 • Carrier Challenges at the Edge
 • Interworking History and Definition
 • Network and Service Interworking (FRF.5 and FRF.8.1)
 • MPLS FR Alliance Multi-Service Interworking Work Actions

• Carrier Migration Examples
Existing Frame Relay / ATM Network

- Typical Scenario
 - Multiple networks
 - Multiple services
 - Voice, Video, Data
 - FR, ATM, DSL, IP, etc
Existing IP / MPLS Network

Typical Scenario
- Multiple networks
- Multiple services
 - Voice, Video, Data
 - FR, ATM, DSL, IP, etc

IP / MPLS network
- SDH/SONET transport
- Separate from ATM
- IP Routed Network
- MPLS deployed?
- RFC 2547bis IP VPNs?
Offer Ethernet VPLS

- Layer 2 VPLS
 - PWE3 Encapsulation
 - Layer 2 Ethernet VPLS

IP / MPLS Backbone
Frame Relay / ATM Migration

- Layer 2 VPWS
 - Add pt-to-pt ATM encapsulation
 - Add pt-to-pt FR encapsulation
Complete MPLS VPN Solution

- **MPLS VPNs**
 - PWE3 Encapsulation
 - Layer 2 Ethernet VPLS
 - ATM legacy migration
 - FR legacy migration
 - Layer 3 2547bis VPNs
 - Combined multiple services
 - New Multi-Service Interworking
MPLS as a Service Enabler

<table>
<thead>
<tr>
<th>SERVICE ENABLERS</th>
<th>TRANSMISSION</th>
<th>SERVICE</th>
<th>Legacy</th>
<th>Layer 3</th>
<th>Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS VPWS</td>
<td>SDH / SONET</td>
<td>MPLS (QoS, TE, FRR)</td>
<td>FR / ATM</td>
<td>IP VPNs</td>
<td>TDM / Voice</td>
</tr>
<tr>
<td>VPWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 IP VPN = RFC2547-bis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VPLS = Virtual Private LAN Services
VPWS = Virtual Private Wire Services
L3 IP VPN = RFC2547-bis
For More Information.

- http://mplsforum.com
- http://www.mplsforum.org/board/
- http://www.frforum.com
- http://www.ietf.org
- http://www.itu.int
- http://www.atmforum.com
- http://www.mplsrc.com
MPLS based Virtual Private Network Services

Thank You

gleonard@riverstonenet.com

http://www.mplsforum.com